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a b s t r a c t

The steady boundary layer flow over a moving permeable sheet in a viscous and incompressible fluid is
considered. In addition to the mass transfer from the plate (suction or injection), the viscous dissipation
term is also included into the energy equation. The sheet is assumed to move in the same or opposite
direction to the free stream. The governing partial differential equations are first transformed into ordinary
differential equations before they are solved numerically by a finite-difference scheme. The numerical
7.15
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results are compared with known results from the open literature for some particular cases of the present
study, to support their validity. The effects of the governing parameters on the flow and thermal fields are
examined. The numerical results indicate that dual solutions exist when the sheet and the free stream
move in the opposite directions. Moreover, compared to injection, suction increases the skin friction
coefficient and the heat transfer rates at the surface, besides delays the boundary layer separation.

© 2008 Elsevier B.V. All rights reserved.
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. Introduction

The behavior of boundary layer flow due to a moving flat sur-
ace immersed in an otherwise quiescent fluid was first studied
y Sakiadis [1], who investigated it theoretically by both exact and
pproximate methods. Significant differences were found between
his behavior and the behavior of the boundary layer on a station-
ry surface in a moving fluid considered by Blasius [2]. The skin
riction is about 30% higher for the Sakiadis result compared to the
lasius result. Tsou et al. [3] showed that the Sakiadis flow is phys-

cally realizable under laboratory conditions, and they determined
he heat transfer rates for certain values of the Prandtl number.

Following the Blasius and Sakiadis works, Abdelhafez [4] investi-
ated the boundary layer flow on a moving flat surface in a parallel
tream, but only the case when the surface and the free stream
ove in the same direction was considered. He showed that the

lassical Blasius and Sakiadis problems are two special cases of his
roblem. Further, Chappidi and Gunnerson [5] considered the sim-
lar problem, and reported a closed form analytical solution as a
unction of the velocity difference between the surface and the
ree stream. Afzal et al. [6] formulated a single set of boundary
onditions, employing a composite velocity Uw + U∞, where Uw is

∗ Corresponding author. Tel.: +60 3 89213371; fax: +60 3 89254519.
E-mail address: rmn72my@yahoo.com (R. Nazar).
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he surface velocity and U∞ is the free stream velocity, instead of
onsidering Uw and U∞ separately as done by Abdelhafez [4], and
happidi and Gunnerson [5]. Moreover, Afzal et al. [6] also con-
idered the case when the surface and the free stream move in
he opposite directions, and found that dual solutions exist for this
ase. The existence and nonuniqueness solutions to the boundary
ayer equations when a surface moves in opposite direction to the
ree stream was discussed also by Weidman et al. [7], Hussaini and
akin [8], and the rigorous proof is given by Hussaini et al. [9]. Very
ecently, Cortell [10] extended the work of Afzal et al. [6], by taking
nto account the effects of viscous dissipation on the thermal field.
owever, the existence of dual solutions was not reported, owing

o the smaller range of velocity ratio between the free stream and
he composite velocity considered in that study. The objective of
he present paper is, therefore, to show that dual solutions exist
hen the velocity ratio exceeds unity, i.e. the sheet moves in oppo-

ite direction to the free stream, besides investigates the effects of
uction and injection on the flow and thermal fields.

The study of boundary layer behavior over a moving surface in
parallel stream has important practical applications such as the

erodynamic extrusion of plastic sheets, the cooling of an infinite

etallic plate in a cooling bath, the boundary layer along mate-

ial handling conveyors, the boundary layer along a liquid film in
ondensation processes, paper production, etc. (see Chappidi and
unnerson [5] and Cortell [10]). The process of suction and injection

blowing) has also its importance in many engineering applications

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:rmn72my@yahoo.com
dx.doi.org/10.1016/j.cej.2008.07.040
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Table 1
The velocity gradient at the surface f ′′(0) for various values of r when f0 = 0

r Cortell [10] Present results

Upper branch Lower branch

0 −0.627547 −0.627562
0.1 −0.493711 −0.493760
0.2 −0.363308 −0.363346
0.3 −0.237132 −0.237133
0.4 −0.115777 −0.115810
0.5 0.0 0.0
0.6 0.109652 0.109638
0.7 0.212374 0.212373
0.8 0.307378 0.307355
0.9 0.393567 0.393563
1.0 0.469602 0.469601
1.1 0.533708 0.001493
1.2 0.583178 0.016171
1
1
1

m
m
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with r for f0 = −0.1, 0 and 0.2. It is seen from this figure that the
value of f ′′(0) is positive when r > 0.5, zero when r = 0.5 and neg-
ative when r < 0.5. Physically, positive value of f ′′(0) means the
fluid exerts a drag force on the sheet, while negative value means
the opposite. There is no skin friction when r = 0.5, since for this
4 A. Ishak et al. / Chemical Eng

uch as in the design of thrust bearing and radial diffusers, and ther-
al oil recovery. Suction is applied to chemical processes to remove

eactants. Blowing is used to add reactants, cool the surfaces, pre-
ent corrosion or scaling and reduce the drag (see Labropulu et al.
11]).

. Flow analysis

Consider the steady two-dimensional laminar flow over a mov-
ng permeable sheet with constant velocity Uw , in the same or
pposite direction to the free stream U∞. The x-axis extends par-
llel to the sheet, while the y-axis extends upwards, normal to the
urface of the sheet. The boundary layer equations are

∂u

∂x
+ ∂v

∂y
= 0, (1)

∂u

∂x
+ v∂u

∂y
= �∂

2u

∂y2
, (2)

here u and v are the velocity components in the x and y directions,
espectively, and � is the kinematic viscosity. We shall solve Eqs. (1)
nd (2) subject to the following boundary conditions:

u = Uw, v = Vw at y = 0,
u→ U∞ as y→ ∞, (3)

here Vw is the mass transfer velocity at the surface of the sheet
ith Vw > 0 for injection (blowing), Vw < 0 for suction and Vw = 0

orresponds to an impermeable sheet.
In order to solve Eqs. (1)–(3), we introduce the following simi-

arity transformation (see Afzal et al. [6] and Hussaini et al. [9]):

= (2�xU)1/2f (�), � =
(
U

2�x

)1/2
y, (4)

here U = Uw + U∞, � is the similarity variable, f is the dimen-
ionless stream function and  is the stream function defined as
= ∂ /∂y and v = −∂ /∂x which identically satisfy Eq. (1). The

omposite velocityU = Uw + U∞ was first introduced by Afzal et al.
6] to enable the formulation of a single set of equation, and not
o consider two cases separately when Uw > U∞ and Uw < U∞ as
nalysed by Abdelhafez [4] and Chappidi and Gunnerson [5]. Using
4) we obtain

= Uf ′(�), v =
(
�U

2x

)1/2
(�f ′ − f ), (5)

here primes denote differentiation with respect to �. In order that
imilarity solutions of Eqs. (1)–(3) exist, we take

w(x) = −
(
�U

2x

)1/2
f0, (6)

here f0 = f (0) is a non-dimensional constant which determines
he transpiration rate at the surface, with f0 > 0 for suction, f0 <

for injection, and f0 = 0 corresponds to an impermeable sheet.
sing (4) and (5), Eq. (2) reduces to the similarity equation

′′′ + ff ′′ = 0. (7)

The boundary conditions (3) now become

(0) = f0, f ′(0) = 1 − r, f ′(∞) → r, (8)

here r is the velocity ratio parameter defined as (see Afzal et al.
6] and Cortell [10])
= U∞
U

(9)

ith 0< r < 1 corresponding to the sheet moving in the same
irection to the free stream, while r < 0 and r > 1 are when they
.3 0.613646 0.051941

.4 0.616140 0.117886

.5 0.565821 0.241872

ove in the opposite directions. We notice that when f0 = 0 (imper-
eable sheet), Eqs. (7) and (8) reduce to those of Afzal et al. [6]

nd Cortell [10], while the cases r = 1 and r = 0 correspond to the
lassical Blasius [2] and Sakiadis [1] problems, respectively.

The physical quantity of interest is the skin friction coefficient
f which can be shown to be given by

1
2
Cf

√
Rex = 1√

2
f ′′(0), (10)

here Rex = Ux/� is the local Reynolds number.
Table 1 shows the comparison of the numerical values of the

resent study with those obtained by Cortell [10], which are in very
ood agreement. The new result in this table is the existence of
ual solutions when r > 1. This result was not reported in [10],
wing to the smaller range of r considered in that paper, i.e. 0 ≤
≤ 1. Further, for impermeable sheet (f0 = 0), the values of f ′′(0)
resented in Table 2 can be reduced to those of Blasius [2] when
= 1, and those of Sakiadis [1] when r = 0 if the factor “2” in Eq. (4)

s neglected, to give f ′′(0)/
√

2 = 0.332 and f ′′(0)/
√

2 = −0.44375,
espectively.

Fig. 1 presents the variation of the skin friction coefficient f ′′(0)
Fig. 1. Skin friction coefficient f ′′(0) as a function of r when f0 = −0.1, 0, 0.2.
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ig. 2. Velocity profiles f ′(�) for various values of r when f0 = 0 (impermeable sheet).

ase, the sheet and the fluid move with the same velocity. The solu-
ion of Eq. (7) subjected to (8) is unique when r ≤ 1, while dual
olutions are found to exist when r > 1, which is in agreement
ith the results reported by Afzal et al. [6]. For a particular value

f f0, the solution could be obtained up to the critical value of r,
ay rc , where the upper branch solution meets the lower branch
olution. Beyond this critical value, no solution is obtained since
he boundary layer has separated from the surface. Based on our
omputations, rc = 1.436, 1.548 and 1.821 for f0 = −0.1, 0 and 0.2,
espectively. This value of rc when f0 = 0 (impermeable sheet) is in
xcellent agreement with those reported by Afzal et al. [6].

For dual solutions, the upper branch is likely to be stable and
hysically relevant solution, since it has smaller boundary layer
hickness (see Figs. 2 and 3), and the only solution for the case
≤ 1. For this solution, the magnitude of f ′′(0) is higher for suction
f0 > 0) compared to injection (f0 < 0). Further, suction increases
he range of r for which the solution exists, whereas injection
ecreases it. Thus, suction delays the boundary layer separation,
hereas injection accelerates it.

The selected velocity profiles are presented in Figs. 2 and 3 for
xed values of f0 and r, respectively. These profiles show that the
oundary conditions (8) are satisfied, which support the validity of
he numerical results obtained. Figs. 2 and 3 also show the exis-

ence of two different velocity profiles, both satisfy the boundary
onditions (8), for a particular value of r and f0, respectively. These
rofiles support the dual nature of f ′′(0) as presented in Table 1 as
ell as Fig. 1, for 1< r < rc .

Fig. 3. Velocity profiles f ′(�) for various values of f0 when r = 1.3.
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. Heat transfer analysis

Under the boundary layer approximations, and taking into
ccount the viscous dissipation effects, the energy equation is given
y

∂T

∂x
+ v∂T

∂y
= ˛∂

2T

∂y2
+ �

cp

(
∂u

∂y

)2

, (11)

here T is the temperature inside the boundary layer, ˛ is the ther-
al diffusivity and cp is the specific heat at constant pressure. We

ssume that the boundary conditions of Eq. (11) are given by

= Tw at y = 0; T → T∞ as y→ ∞, (12)

here Tw and T∞ are constants, with Tw > T∞. By defining the
imensionless temperature �(�) as

(�) = T − T∞
Tw − T∞

, (13)

nd by using relations (4), Eqs. (11) and (12) become

1
Pr
�′′ + f�′ + Ec(f ′′)2 = 0, (14)

(0) = 1, �(∞) → 0, (15)

here Pr = �/˛ is the Prandtl number and Ec = U2/cp(Tw − T∞) is
he Eckert number.

The local Nusselt number (rate of heat transfer at the surface)
ux is derived using (13), and is given by

Nux√
Rex

= − 1√
2
�′(0). (16)

Table 2 presents the values of −�′(0) for some values of Ec and
when f0 = 0 (impermeable sheet). The present results are very
ell comparable with those results reported by Cortell [10]. Dual

olutions are found to exist when r > 1, a new result that was
ot reported in [10]. The variation of −�′(0) with r for f0 = −0.1,
and 0.2 when Ec = 0.03 and Pr = 0.7 is depicted in Fig. 4, with

he selected temperature profiles are given in Figs. 5–7. For the
pper branch solution (likely to be physically relevant and stable
olution), the heat transfer rate at the surface is higher for suction
ompared to injection. This is because suction increases the sur-
ace shear stress, while injection decreases it. Fig. 4 also shows that
here is heat transfer from the sheet to the fluid (−�′(0)> 0) when
= 0.5, even though there is no skin friction for this case (see Fig.
), since the sheet and the fluid are at different temperatures.

Figs. 5–7 show the existence of two different temperature pro-

les for a particular value of r, f0 and Pr, respectively, which produce
wo different values of −�′(0) as shown in Fig. 4 . It is seen from these
gures that the boundary layer thickness is smaller for the upper
ranch solution compared to the lower branch solution. Also, Figs.
and 7 show that for the upper branch solution, the temperature

able 2
he values of −�′(0) for various values of Ec and r when f0 = 0 and Pr = 0.7 (air)

c r Cortell [10] Present results

Upper branch Lower branch

.0 0.1 0.493622 0.493641

.03 0.489284 0.489305
0.3 0.484773 0.484789
0.7 0.452177 0.452195
0.9 0.425217 0.425233
1.2 0.368048 0.023648
1.5 0.264915 0.133918

.1 1.2 0.346889 0.022557
1.5 0.234991 0.119907
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Fig. 4. Local Nusselt number −�′(0) as a function of r for f0 = −0.1, 0, 0.2 when
Ec = 0.03 and Pr = 0.7.
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ig. 5. Temperature profiles �(�) for various values of r when f0 = 0, Ec = 0.03 and
r = 0.7 (air).
radient at the surface is higher for higher values of f0 and Pr, and
his implies increasing manner of the local Nusselt number with
ncreasing values of these parameters. Thus, the heat transfer rate
t the surface is higher for higher values of f0 and Pr.

ig. 6. Temperature profiles �(�) for various values of f0 when r = 1.3, Ec = 0.1 and
r = 1.
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ig. 7. Temperature profiles �(�) for various values of Pr when r = 1.5, Ec = 0.1 and
0 = 0.2.

. Conclusions

We studied theoretically the problem of steady boundary layer
ow and heat transfer over a moving sheet in a parallel stream.
he governing partial differential equations are transformed into
rdinary differential equations using similarity transformation,
hich are more convenient for numerical computation. The trans-

ormed nonlinear ordinary differential equations are then solved
umerically by a finite-difference scheme known as the Keller
ox method described in [12]. The numerical results obtained are
hen compared with previously reported cases available from the
pen literature, and they are found to be in very good agreement.
rom the present investigation, we found that dual solutions exist
hen the motion of the sheet is in opposite direction to the free

tream, the case that was not considered in [10]. The upper branch
s likely to be physical and stable solution, and for this solution,
uction increases the magnitude of the skin friction coefficient
nd in consequence increases the heat transfer rate at the sur-
ace, while injection shows the opposite manner. Moreover, suction
elays the boundary layer separation, while injection (blowing)
ccelerates it.
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